Health Effects of Sunlight Exposure

Do not Suppress Your Negative Feelings 

Researchers Oliver John of UC Berkeley and James Gross of Stanford found that “negative” feelings like sorrow or anger only intensify when we try to suppress them. Do not deny your negative emotions but to figure the roots of it.  If we do not recognize the source or reasons of our negative feeling, we can’t solve it or uproot it. Running away from our negative emotions can be a futile attempt. A study led by Sanjay Srivastava of the University of Oregon found that college students who bottled up their emotions felt less close to others and were less satisfied with their social lives.


Sunlight Exposure Boosts Our Mood

Sunlight has a profound positive impact on our mental health. An estimated 20 percent of Americans are affected by Seasonal Affective Disorder (SAD) in winter and suffer from the blues, fatigue or even depression. What differentiates SAD from regular depression is that full remission occurs in the spring and summer, which explains why depression rates rise during fall and winter.


Nature’s healing power is backed up by science. A plenty of studies show that spending time in nature helps reduce stress and anxiety.Beyond this, sunlight energizes vitamin D, which has been shown to calm the nervous system and relieve seasonal affective disorder (SAD). Vitamin D also promotes calcium absorption in the body.  A series of studies published in the Journal of Environmental Psychology found that people who were exposed to nature for 20 minutes a day experienced elevated energy levels and better overall mood. A study by the University of Rochester asserts that nature helps people to be more generous and more socially conscious. Studies have shown that having indoor plants help reduce headaches and fatigue.


Based on TCM theory, overthinking and anxiety are be harmful to our brain and kidney. Having a blonde movement occasionally can be good for our brain by letting our brain having a break time.

Light Therapy 

Light therapy is thought to affect brain chemicals, which helps alleviate  SAD symptoms,  anxiety, depression, PTSD, and sleep disorders.  Light therapy is also titled as bright light therapy or phototherapy.  Nevertheless, light therapy fails to “fix” a broken heart or wounded mind. Try your best to find the positive meanings behind anything that breaks your heart. 


Vitamin D Production and Depression 
Sunlight affects our serotonin, endorphins, nitric oxide levels, and mitochondrial energy. A deficiency of vitamin D is strongly associated with a higher risk of depression.Research has shown having a vitamin D level below 20 nanograms per milliliter (ng/mL) can raise risk for depression by as much as 85 percent, compared to having a vitamin D level greater than 30 ng/mL. A number of studies also confirmed that vitamin D supplementation help alleviate depression symptoms. 3


Ultraviolet B radiation is the only portion to photosynthesize vitamin D in our skin.Swiss specialist Dr. Auguste Rollier argues that the composition of the different parts of the light spectrum is crucially important to secure all of the benefits from sun exposure.


According to Dr. Alexander Wunsch, as human beings remove the stimulus sunlight from daily lives, people would end up with a variety of problems. As noted by Wunsch in an interview:“Sunlight induces coordinated endocrine adaptation effects. It affects sympathetic and parasympathetic activity, and is a major circadian and seasonal stimulus for the body clock …Our system, via the eyes and via the skin, detects the colors of the light in the environment in order to adapt the hormonal system to the specific needs of the time and place.”


According to a paper published in the journal Dermato-Endocrinology,6 a large number of molecules (chromophores) found in the different layers of our skin absorb and interact with ultraviolet rays, producing a number of complex and synergistic effects. In a word, our body uses the near-infrared light spectrum to produce mitochondrial energy and maintain systemic equilibrium.


Sunlight regulates our circadian rhythm

  • When situated in the darkness , our melatonin level increases.
  • Ultraviolet (UV) light have a mood-boosting effect because it stimulates epidermal cells known as keratinocytes to make beta-endorphins. Exposure to sunlight helps the secretion of serotonin,thereby elevates our mood and energy.


Nitric oxide (NO) :Lower inflammation

UVA generates nitric oxidein our skin  stimulates up to 60 percent of our blood to flow to our skin capillaries where absorb energy and infrared radiation. UVA helps kill infections in blood while the infrared radiation recharges our cellular battery. Nitric oxide also protects our heart by relaxing our blood vessels and lowering our blood pressure by actinig as a natural antioxidant. Significantly, nitric oxide helps lower inflammation level. 


Vitamin D Deficiency and Depression

There’s ample evidence suggesting vitamin D plays an important role in mental health.A 2007 study suggested that vitamin D deficiency is responsible for depression symptoms and anxiety in patients with fibromyalgia[1] A double-blind randomized trial published in 2008 notes that high doses of vitamin D were effective at alleviating depression symptoms.


Tips for Beating the Winter Blues

1.Regular exercise 

Regular exercise has been proved to be more effective than antidepressant drugs in fighting against SAD. Because exercise normalizes our insulin levels[2] and boosts “feel good” hormones in our brain. Researchers have discovered that exercise allows our body to eliminate kynurenine[3] , which is a harmful protein associated with depression.12


2. Sleep early/ Sufficient sleep 

There’s a direct link between depression and sleep deprivation. Approximately, of the 18 million Americans with depression, more than half of them are struggling with insomnia. People with sleep deprivation are more likely to feel blue. Also, insomnia was one of a stereotypical symptom of depression.  


Sleep therapy: One study found that 87 percent of depression patients who resolved their insomnia defeated their depression symptoms eight weeks later.


3.A balanced diet 

Diet and food have an profound  impact on our emotions. A balanced diet help improve our mental health.

4.Avoid processed foods

Most processed foods have lots of refined sugar, processed fructose and synthetic chemicals,  all of which are known to have detrimental  impact on our brain.Thus, cutting out artificial sweeteners is a must.


5. Fermented foods are good for gut health.

Indeed, gut produces more mood-regulating serotonin[4] than our brain does. Fermented foods are able to optimize our gut health.


5. Omega-3 fats

Omega-3 fats are an important nutrient for brain function.[5]


6. Vitamin B12 deficiency 

Vitamin B12 deficiency is a common factor which contributes to depression symptoms.


[1] 中文:纖維肌痛

[2] 中文:胰島素水平

[3] 中文:犬尿氨酸

[4] 中文: 血清素

[5] One 2009 study showed that people with lower blood levels of omega-3s were more likely to have symptoms of depression.



Sunshine-exposure variation of human striatal dopamine D(2)/D(3) receptor availability in healthy volunteers.

The neurobiology of the stress-resistant brain

Interactions between sleep, stress, and metabolism: From physiological to pathological conditions Camila Hirotsu, Sergio Tufik, and Monica Levy Andersen

Health Benefits of Sunlight M. Nathaniel Mead

Sun Exposure and Its Effects on Human Health: Mechanisms through Which Sun Exposure Could Reduce the Risk of Developing Obesity and Cardiometabolic Dysfunction By Naomi FleurySian Geldenhuys, and Shelley Gorman*

Sunlight Effects on Immune System: UV-Induced Immunosuppression D. H. González MaglioM. L. Paz, and J. Leoni

Enhanced Oxidative Stress Resistance through Activation of a Zinc Deficiency Transcription Factor in Brachypodium distachyon


Further  Reading

1. Seetho I.W., Wilding J.P. Sleep-disordered breathing, type 2 diabetes and the metabolic syndrome. Chron Respir Dis. 2014;11(4):257–275. [PubMed[]
2. Meerlo P., Sgoifo A., Suchecki D. Restricted and disrupted sleep: effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med Rev. 2008;12(3):197–210. [PubMed[]
3. Spencer R.L., Kim P.J., Kalman B.A., Cole M.A. Evidence for mineralocorticoid receptor facilitation of glucocorticoid receptor-dependent regulation of hypothalamic-pituitary-adrenal axis activity. Endocrinology. 1998;139(6):2718–2726. [PubMed[]
4. Buckley T.M., Schatzberg A.F. On the interactions of the hypothalamic-pituitary-adrenal (HPA) axis and sleep: normal HPA axis activity and circadian rhythm, exemplary sleep disorders. J Clin Endocrinol Metab. 2005;90(5):3106–3114. [PubMed[]
5. Kalsbeek A., van der Spek R., Lei J., Endert E., Buijs R.M., Fliers E. Circadian rhythms in the hypothalamo-pituitary-adrenal (HPA) axis. Mol Cell Endocrinol. 2012;349(1):20–29. [PubMed[]
6. Spiegel K., Tasali E., Leproult R., Van Cauter E. Effects of poor and short sleep on glucose metabolism and obesity risk. Nat Rev Endocrinol. 2009;5(5):253–261.[PMC free article] [PubMed[]
7. Steiger A. Neurochemical regulation of sleep. J Psychiatr Res. 2007;41(7):537–552.[PubMed[]
8. Gonnissen H.K., Hulshof T., Westerterp-Plantenga M.S. Chronobiology, endocrinology, and energy- and food-reward homeostasis. Obes Rev. 2013;14(5):405–416. [PubMed[]
9. Buxton O.M., Copinschi G., Van Onderbergen A., Karrison T.G., Van Cauter E. A benzodiazepine hypnotic facilitates adaptation of circadian rhythms and sleep-wake homeostasis to an eight hour delay shift simulating westward jet lag. Sleep. 2000;23(7):915–927. [PubMed[]
10. Caufriez A., Moreno-Reyes R., Leproult R., Vertongen F., Van Cauter E., Copinschi G. Immediate effects of an 8-h advance shift of the rest-activity cycle on 24-h profiles of cortisol. Am J Physiol Endocrinol Metab. 2002;282(5):E1147–E1153. [PubMed[]
11. Roth T. Insomnia: definition, prevalence, etiology, and consequences. J. Clin. Sleep Med. 2007;3(5 Suppl):S7–10. [PMC free article] [PubMed[]
12. Adam K., Tomeny M., Oswald I. Physiological and psychological differences between good and poor sleepers. J Psychiatr Res. 1986;20(4):301–316. [PubMed[]
13. Vgontzas A.N., Tsigos C., Bixler E.O., Stratakis C.A., Zachman K., Kales A. Chronic insomnia and activity of the stress system: a preliminary study. J Psychosom Res. 1998;45(1):21–31. [PubMed[]
14. Vgontzas A.N., Bixler E.O., Lin H.M., Prolo P., Mastorakos G., Vela-Bueno A. Chronic insomnia is associated with nyctohemeral activation of the hypothalamic-pituitary-adrenal axis: clinical implications. J Clin Endocrinol Metab. 2001;86(8):3787–3794. [PubMed[]
15. Rodenbeck A., Hajak G. Neuroendocrine dysregulation in primary insomnia. Rev. Neurol. (Paris) 2001;157(11 Pt 2):S57–S61. [PubMed[]
16. Spiegel K., Leproult R., Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354(9188):1435–1439. [PubMed[]
17. Balbo M., Leproult R., Van Cauter E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int J Endocrinol. 2010;2010:759234.[PMC free article] [PubMed[]
18. Grunstein R.R., Stewart D.A., Lloyd H., Akinci M., Cheng N., Sullivan C.E. Acute withdrawal of nasal CPAP in obstructive sleep apnea does not cause a rise in stress hormones. Sleep. 1996;19(10):774–782. [PubMed[]
19. Bratel T., Wennlund A., Carlstrom K. Pituitary reactivity, androgens and catecholamines in obstructive sleep apnoea. Effects of continuous positive airway pressure treatment (CPAP). Respir Med. 1999;93(1):1–7. [PubMed[]
20. Tomfohr L.M., Edwards K.M., Dimsdale J.E. Is obstructive sleep apnea associated with cortisol levels? A systematic review of the research evidence. Sleep Med Rev. 2012;16(3):243–249. [PMC free article] [PubMed[]
21. Rapoport D., Rothenburg S.A., Hollander C.S., Goldring R.M. Obstructive sleep apnea (OSA) alters ultradian rhythm of ACTH secretion. American Review of Respiratory Disease. 139. 1999:A80. []
22. Dadoun F., Darmon P., Achard V., Boullu-Ciocca S., Philip-Joet F., Alessi M.C. Effect of sleep apnea syndrome on the circadian profile of cortisol in obese men. Am. J. Physiol. Endocrinol. Metab. 2007;293(2):E466–E474. [PubMed[]
23. Lanfranco F., Gianotti L., Pivetti S., Navone F., Rossetto R., Tassone F. Obese patients with obstructive sleep apnoea syndrome show a peculiar alteration of the corticotroph but not of the thyrotroph and lactotroph function. Clin Endocrinol (Oxf) 2004;60(1):41–48. [PubMed[]
24. Karaca Z., Ismailogullari S., Korkmaz S., Cakir I., Aksu M., Baydemir R. Obstructive sleep apnoea syndrome is associated with relative hypocortisolemia and decreased hypothalamo-pituitary-adrenal axis response to 1 and 250mug ACTH and glucagon stimulation tests. Sleep Med. 2013;14(2):160–164. [PubMed[]
25. Weitzman E.D., Zimmerman J.C., Czeisler C.A., Ronda J. Cortisol secretion is inhibited during sleep in normal man. J Clin Endocrinol Metab. 1983;56(2):352–358.[PubMed[]
26. Leproult R., Copinschi G., Buxton O., Van Cauter E. Sleep loss results in an elevation of cortisol levels the next evening. Sleep. 1997;20(10):865–870. [PubMed[]
27. Follenius M., Brandenberger G., Bandesapt J.J., Libert J.P., Ehrhart J. Nocturnal cortisol release in relation to sleep structure. Sleep. 1992;15(1):21–27. [PubMed[]
28. Seifritz E., Hemmeter U., Trachsel L., Lauer C.J., Hatzinger M., Emrich H.M. Effects of flumazenil on recovery sleep and hormonal secretion after sleep deprivation in male controls. Psychopharmacology (Berl) 1995;120(4):449–456. [PubMed[]
29. Kant G.J., Genser S.G., Thorne D.R., Pfalser J.L., Mougey E.H. Effects of 72 hour sleep deprivation on urinary cortisol and indices of metabolism. Sleep. 1984;7(2):142–146. [PubMed[]
30. Akerstedt T., Palmblad J., de la Torre B., Marana R., Gillberg M. Adrenocortical and gonadal steroids during sleep deprivation. Sleep. 1980;3(1):23–30. [PubMed[]
31. Andersen M.L., Bignotto M., Tufik S. Influence of paradoxical sleep deprivation and cocaine on development of spontaneous penile reflexes in rats of different ages. Brain Res. 2003;968(1):130–138. [PubMed[]
32. Spath-Schwalbe E., Scholler T., Kern W., Fehm H.L., Born J. Nocturnal adrenocorticotropin and cortisol secretion depends on sleep duration and decreases in association with spontaneous awakening in the morning. J Clin Endocrinol Metab. 1992;75(6):1431–1435. [PubMed[]
33. Hasler G., Buysse D.J., Klaghofer R., Gamma A., Ajdacic V., Eich D. The association between short sleep duration and obesity in young adults: a 13-year prospective study. Sleep. 2004;27(4):661–666. [PubMed[]
34. Vorona R.D., Winn M.P., Babineau T.W., Eng B.P., Feldman H.R., Ware J.C. Overweight and obese patients in a primary care population report less sleep than patients with a normal body mass index. Arch. Intern. Med. 2005;165(1):25–30.[PubMed[]
35. Ehlers C.L., Reed T.K., Henriksen S.J. Effects of corticotropin-releasing factor and growth hormone-releasing factor on sleep and activity in rats. Neuroendocrinology. 1986;42(6):467–474. [PubMed[]
36. Holsboer F., von Bardeleben U., Steiger A. Effects of intravenous corticotropin-releasing hormone upon sleep-related growth hormone surge and sleep EEG in man. Neuroendocrinology. 1988;48(1):32–38. [PubMed[]
37. Gillin J.C., Jacobs L.S., Fram D.H., Snyder F. Acute effect of a glucocorticoid on normal human sleep. Nature. 1972;237(5355):398–399. [PubMed[]
38. Born J., DeKloet E.R., Wenz H., Kern W., Fehm H.L. Gluco- and antimineralocorticoid effects on human sleep: a role of central corticosteroid receptors. Am. J. Physiol. 1991;260(2 Pt 1):E183–E188. [PubMed[]
39. Vazquez-Palacios G., Retana-Marquez S., Bonilla-Jaime H., Velazquez-Moctezuma J. Further definition of the effect of corticosterone on the sleep-wake pattern in the male rat. Pharmacol Biochem Behav. 2001;70(2-3):305–310. [PubMed[]
40. Born J., Spath-Schwalbe E., Schwakenhofer H., Kern W., Fehm H.L. Influences of corticotropin-releasing hormone, adrenocorticotropin, and cortisol on sleep in normal man. J Clin Endocrinol Metab. 1989;68(5):904–911. [PubMed[]
41. Bierwolf C., Kern W., Molle M., Born J., Fehm H.L. Rhythms of pituitary-adrenal activity during sleep in patients with Cushing׳s disease. Exp Clin Endocrinol Diabetes. 2000;108(7):470–479. [PubMed[]
42. Spiegel K., Knutson K., Leproult R., Tasali E., Van Cauter E. Sleep loss: a novel risk factor for insulin resistance and Type 2 diabetes. J. Appl. Physiol. 2005;99(5):2008–2019. [PubMed[]
43. Vioque J., Torres A., Quiles J. Time spent watching television, sleep duration and obesity in adults living in Valencia, Spain. Int J Obes Relat Metab Disord. 2000;24(12):1683–1688. [PubMed[]
44. Padilha H.G., Crispim C.A., Zimberg I.Z., De-Souza D.A., Waterhouse J., Tufik S. A link between sleep loss, glucose metabolism and adipokines. Braz J Med Biol Res. 2011;44(10):992–999. [PubMed[]
45. Zimberg I.Z., Damaso A., Del Re M., Carneiro A.M. H. de Sa Souza, F.S. de Lira, et al., Short sleep duration and obesity: mechanisms and future perspectives. Cell Biochem Funct. 2012;30(6):524–529. [PubMed[]
46. Kohatsu N.D., Tsai R., Young T., Vangilder R., Burmeister L.F., Stromquist A.M. Sleep duration and body mass index in a rural population. Arch Intern Med. 2006;166(16):1701–1705. [PubMed[]
47. Gupta N.K., Mueller W.H., Chan W., Meininger J.C. Is obesity associated with poor sleep quality in adolescents? Am J Hum Biol. 2002;14(6):762–768. [PubMed[]
48. Patel S.R., Hu F.B. Short sleep duration and weight gain: a systematic review. Obesity (Silver Spring) 2008;16(3):643–653. [PMC free article] [PubMed[]
49. Spiegel K., Tasali E., Penev P., Van Cauter E. Brief communication: Sleep curtailment in healthy young men is associated with decreased leptin levels, elevated ghrelin levels, and increased hunger and appetite. Ann Intern Med. 2004;141(11):846–850. [PubMed[]
50. Taheri S. The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity. Arch Dis Child. 2006;91(11):881–884. [PMC free article][PubMed[]
51. Cappuccio F.P., Taggart F.M., Kandala N.B., Currie A., Peile E., Stranges S. Meta-analysis of short sleep duration and obesity in children and adults. Sleep. 2008;31(5):619–626. [PMC free article] [PubMed[]
52. Maquet P. Sleep function(s) and cerebral metabolism. Behav Brain Res. 1995;69(1-2):75–83. [PubMed[]
53. Cirelli C., Faraguna U., Tononi G. Changes in brain gene expression after long-term sleep deprivation. J Neurochem. 2006;98(5):1632–1645. [PubMed[]
54. Simon C., Gronfier C., Schlienger J.L., Brandenberger G. Circadian and ultradian variations of leptin in normal man under continuous enteral nutrition: relationship to sleep and body temperature. J Clin Endocrinol Metab. 1998;83(6):1893–1899. [PubMed[]
55. Sinton C.M., Fitch T.E., Gershenfeld H.K. The effects of leptin on REM sleep and slow wave delta in rats are reversed by food deprivation. J Sleep Res. 1999;8(3):197–203. [PubMed[]
56. Crispim C.A., Zalcman I., Dattilo M., Padilha H.G., Edwards B., Waterhouse J. The influence of sleep and sleep loss upon food intake and metabolism. Nutr Res Rev. 2007;20(2):195–212. [PubMed[]
57. Weikel J.C., Wichniak A., Ising M., Brunner H., Friess E., Held K. Ghrelin promotes slow-wave sleep in humans. Am J Physiol Endocrinol Metab. 2003;284(2):E407–E415.[PubMed[]
58. Schussler P., Uhr M., Ising M., Weikel J.C., Schmid D.A., Held K. Nocturnal ghrelin, ACTH, GH and cortisol secretion after sleep deprivation in humans. Psychoneuroendocrinology. 2006;31(8):915–923. [PubMed[]
59. Spiegel K., Leproult R., L׳Hermite-Baleriaux M., Copinschi G., Penev P.D., Van Cauter E. Leptin levels are dependent on sleep duration: relationships with sympathovagal balance, carbohydrate regulation, cortisol, and thyrotropin. J Clin Endocrinol Metab. 2004;89(11):5762–5771. [PubMed[]
60. Taheri S., Lin L., Austin D., Young T., Mignot E. Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index. PLoS Med. 2004;1(3):e62. [PMC free article] [PubMed[]
61. Mullington J.M., Chan J.L., Van Dongen H.P., Szuba M.P. J. Samaras, N.J. Price, et al., Sleep loss reduces diurnal rhythm amplitude of leptin in healthy men. J Neuroendocrinol. 2003;15(9):851–854. [PubMed[]
62. Bodosi B., Gardi J., Hajdu I., Szentirmai E., Obal F., Jr., Krueger J.M. Rhythms of ghrelin, leptin, and sleep in rats: effects of the normal diurnal cycle, restricted feeding, and sleep deprivation. Am J Physiol Regul Integr Comp Physiol. 2004;287(5):R1071–R1079. [PubMed[]
63. Buxton O.M., Pavlova M., Reid E.W., Wang W., Simonson D.C., Adler G.K. Sleep restriction for 1 week reduces insulin sensitivity in healthy men. Diabetes. 2010;59(9):2126–2133. [PMC free article] [PubMed[]
64. Nedeltcheva A.V., Kilkus J.M. J. Imperial, D.A. Schoeller and P.D. Penev, Insufficient sleep undermines dietary efforts to reduce adiposity. Ann Intern Med. 2010;153(7):435–441. [PMC free article] [PubMed[]
65. Pejovic S., Vgontzas A.N., Basta M., Tsaoussoglou M., Zoumakis E., Vgontzas A. Leptin and hunger levels in young healthy adults after one night of sleep loss. J Sleep Res. 2010;19(4):552–558. [PMC free article] [PubMed[]
66. St-Onge M.P. The role of sleep duration in the regulation of energy balance: effects on energy intakes and expenditure. J Clin Sleep Med. 2013;9(1):73–80.[PMC free article] [PubMed[]
67. Gonnissen H.K., Hursel R., Rutters F., Martens E.A., Westerterp-Plantenga M.S. Effects of sleep fragmentation on appetite and related hormone concentrations over 24 h in healthy men. Br J Nutr. 2012:1–9. [PubMed[]
68. Shaw J.E., Punjabi N.M., Wilding J.P., Alberti K.G., Zimmet P.Z. E. International Diabetes Federation Taskforce on, et al., Sleep-disordered breathing and type 2 diabetes: a report from the International Diabetes Federation Taskforce on Epidemiology and Prevention. Diabetes Res Clin Pract. 2008;81(1):2–12. [PubMed[]
69. Foster G.D., Sanders M.H., Millman R., Zammit G., Borradaile K.E., Newman A.B. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009;32(6):1017–1019. [PMC free article] [PubMed[]
70. Laaban J.P., Daenen S., Leger D., Pascal S., Bayon V., Slama G. Prevalence and predictive factors of sleep apnoea syndrome in type 2 diabetic patients. Diabetes Metab. 2009;35(5):372–377. [PubMed[]
71. Lurie A. Metabolic disorders associated with obstructive sleep apnea in adults. Adv Cardiol. 2011;46:67–138. [PubMed[]
72. Hecht L., Mohler R., Meyer G. Effects of CPAP-respiration on markers of glucose metabolism in patients with obstructive sleep apnoea syndrome: a systematic review and meta-analysis. Ger Med Sci. 9. 2011:Doc20. [PMC free article] [PubMed[]
73. Rolls A., Schaich Borg J. and L. de Lecea, Sleep and metabolism: role of hypothalamic neuronal circuitry. Best Pract Res Clin Endocrinol Metab. 2010;24(5):817–828. [PubMed[]
74. Kok S.W., Overeem S., Visscher T.L., Lammers G.J., Seidell J.C., Pijl H. Hypocretin deficiency in narcoleptic humans is associated with abdominal obesity. Obes Res. 2003;11(9):1147–1154. [PubMed[]
75. Fortuyn H.A., Swinkels S., Buitelaar J., Renier W.O., Furer J.W., Rijnders C.A. High prevalence of eating disorders in narcolepsy with cataplexy: a case-control study. Sleep. 2008;31(3):335–341. [PMC free article] [PubMed[]
76. Tsujino N., Sakurai T. Orexin/hypocretin: a neuropeptide at the interface of sleep, energy homeostasis, and reward system. Pharmacol Rev. 2009;61(2):162–176. [PubMed[]
77. Beitinger P.A., Fulda S., Dalal M.A., Wehrle R., Keckeis M., Wetter T.C. Glucose tolerance in patients with narcolepsy. Sleep. 2012;35(2):231–236. [PMC free article][PubMed[]
78. Poli F., Plazzi G., Di Dalmazi G., Ribichini D., Vicennati V., Pizza F. Body mass index-independent metabolic alterations in narcolepsy with cataplexy. Sleep. 2009;32(11):1491–1497. [PMC free article] [PubMed[]
79. van Drongelen A., Boot C.R., Merkus S.L., Smid T., van der Beek A.J. The effects of shift work on body weight change – a systematic review of longitudinal studies. Scand J Work Environ Health. 2011;37(4):263–275. [PubMed[]
80. Crispim C.A., Waterhouse J., Damaso A.R., Zimberg I.Z., Padilha H.G., Oyama L.M. Hormonal appetite control is altered by shift work: a preliminary study. Metabolism. 2011;60(12):1726–1735. [PubMed[]
81. Ortega F.B., Chillon P., Ruiz J.R., Delgado M., Albers U., Alvarez-Granda J.L. Sleep patterns in Spanish adolescents: associations with TV watching and leisure-time physical activity. Eur J Appl Physiol. 2010;110(3):563–573. [PubMed[]
82. Knutson K.L. Sex differences in the association between sleep and body mass index in adolescents. J Pediatr. 2005;147(6):830–834. [PubMed[]
83. Jung C.M., Melanson E.L., Frydendall E.J., Perreault L., Eckel R.H., Wright K.P. Energy expenditure during sleep, sleep deprivation and sleep following sleep deprivation in adult humans. J. Physiol. 2011;589(Pt 1):235–244. [PMC free article] [PubMed[]
84. Benedict C., Hallschmid M., Lassen A., Mahnke C., Schultes B., Schioth H.B. Acute sleep deprivation reduces energy expenditure in healthy men. Am J Clin Nutr. 2011;93(6):1229–1236. [PubMed[]
85. Schmid S.M., Hallschmid M., Jauch-Chara K., Wilms B., Benedict C., Lehnert H. Short-term sleep loss decreases physical activity under free-living conditions but does not increase food intake under time-deprived laboratory conditions in healthy men. Am J Clin Nutr. 2009;90(6):1476–1482. [PubMed[]
86. St-Onge M.P., Roberts A.L., Chen J., Kelleman M., O׳Keeffe M., RoyChoudhury A. Short sleep duration increases energy intakes but does not change energy expenditure in normal-weight individuals. Am J Clin Nutr. 2011;94(2):410–416. [PMC free article][PubMed[]
87. Nedeltcheva A.V., Kilkus J.M. J. Imperial, K. Kasza, D.A. Schoeller and P.D. Penev, Sleep curtailment is accompanied by increased intake of calories from snacks. Am J Clin Nutr. 2009;89(1):126–133. [PMC free article] [PubMed[]
88. Hursel R., Rutters F., Gonnissen H.K., Martens E.A., Westerterp-Plantenga M.S. Effects of sleep fragmentation in healthy men on energy expenditure, substrate oxidation, physical activity, and exhaustion measured over 48 h in a respiratory chamber. Am J Clin Nutr. 2011;94(3):804–808. [PubMed[]
89. Buman M.P., Hekler E.B., Bliwise D.L., King A.C. Exercise effects on night-to-night fluctuations in self-rated sleep among older adults with sleep complaints. J. Sleep Res. 2011;20(1 Pt 1):28–37. [PMC free article] [PubMed[]
90. Fuller P.M., Lu J., Saper C.B. Differential rescue of light- and food-entrainable circadian rhythms. Science. 2008;320(5879):1074–1077. [PMC free article] [PubMed[]
91. Karklin A., Driver H.S., Buffenstein R. Restricted energy intake affects nocturnal body temperature and sleep patterns. Am J Clin Nutr. 1994;59(2):346–349. [PubMed[]
92. Penev P.D. Sleep deprivation and energy metabolism: to sleep, perchance to eat? Curr Opin Endocrinol Diabetes Obes. 2007;14(5):374–381. [PubMed[]
93. Champaneri S., Wand G.S., Malhotra S.S., Casagrande S.S., Golden S.H. Biological basis of depression in adults with diabetes. Curr Diab Rep. 2010;10(6):396–405.[PubMed[]
94. Beauquis J., Homo-Delarche F., Revsin Y., De Nicola A.F., Saravia F. Brain alterations in autoimmune and pharmacological models of diabetes mellitus: focus on hypothalamic-pituitary-adrenocortical axis disturbances. Neuroimmunomodulation. 2008;15(1):61–67. [PubMed[]
95. Krolow R., Noschang C., Arcego D.M., Huffell A.P., Marcolin M.L., Benitz A.N. Sex-specific effects of isolation stress and consumption of palatable diet during the prepubertal period on metabolic parameters. Metabolism. 2013;62(9):1268–1278.[PubMed[]
96. Chrousos G.P. The role of stress and the hypothalamic-pituitary-adrenal axis in the pathogenesis of the metabolic syndrome: neuro-endocrine and target tissue-related causes. Int J Obes Relat Metab Disord. 24. 2000;Suppl 2:S50–S55. [PubMed[]
97. Pervanidou P., Chrousos G.P. Metabolic consequences of stress during childhood and adolescence. Metabolism. 2012;61(5):611–619. [PubMed[]
98. de Oliveira C., de Mattos A.B., Biz C., Oyama L.M., Ribeiro E.B., do Nascimento C.M. High-fat diet and glucocorticoid treatment cause hyperglycemia associated with adiponectin receptor alterations. Lipids Health Dis. 2011;10:11. [PMC free article][PubMed[]
99. Ely D.R., Dapper V., Marasca J., Correa J.B., Gamaro G.D., Xavier M.H. Effect of restraint stress on feeding behavior of rats. Physiol Behav. 1997;61(3):395–398.[PubMed[]
100. Varma M., Chai J.K., Meguid M.M., Gleason J.R., Yang Z.J. Effect of operative stress on food intake and feeding pattern in female rats. Nutrition. 1999;15(5):365–372.[PubMed[]
101. Willner P. Animal models as simulations of depression. Trends Pharmacol Sci. 1991;12(4):131–136. [PubMed[]
102. Dallman M.F., Strack A.M., Akana S.F., Bradbury M.J., Hanson E.S., Scribner K.A. Feast and famine: critical role of glucocorticoids with insulin in daily energy flow. Front Neuroendocrinol. 1993;14(4):303–347. [PubMed[]
103. Stephens T.W., Basinski M., Bristow P.K., Bue-Valleskey J.M., Burgett S.G., Craft L. The role of neuropeptide Y in the antiobesity action of the obese gene product. Nature. 1995;377(6549):530–532. [PubMed[]
104. Garcia-Prieto M.D., Tebar F.J., Nicolas F., Larque E., Zamora S., Garaulet M. Cortisol secretary pattern and glucocorticoid feedback sensitivity in women from a Mediterranean area: relationship with anthropometric characteristics, dietary intake and plasma fatty acid profile. Clin Endocrinol (Oxf) 2007;66(2):185–191. [PubMed[]
105. Pecoraro N., Gomez F., Dallman M.F. Glucocorticoids dose-dependently remodel energy stores and amplify incentive relativity effects. Psychoneuroendocrinology. 2005;30(9):815–825. [PubMed[]
106. Pecoraro N., Reyes F., Gomez F., Bhargava A., Dallman M.F. Chronic stress promotes palatable feeding, which reduces signs of stress: feedforward and feedback effects of chronic stress. Endocrinology. 2004;145(8):3754–3762. [PubMed[]
107. Rask E., Olsson T., Soderberg S., Andrew R., Livingstone D.E., Johnson O. Tissue-specific dysregulation of cortisol metabolism in human obesity. J Clin Endocrinol Metab. 2001;86(3):1418–1421. [PubMed[]
108. Travison T.G., O׳Donnell A.B., Araujo A.B., Matsumoto A.M., McKinlay J.B. Cortisol levels and measures of body composition in middle-aged and older men. Clin Endocrinol (Oxf) 2007;67(1):71–77. [PubMed[]
109. Vgontzas A.N., Pejovic S., Zoumakis E., Lin H.M., Bentley C.M., Bixler E.O. Hypothalamic-pituitary-adrenal axis activity in obese men with and without sleep apnea: effects of continuous positive airway pressure therapy. J Clin Endocrinol Metab. 2007;92(11):4199–4207. [PubMed[]
110. Anagnostis P., Athyros V.G., Tziomalos K., Karagiannis A., Mikhailidis D.P. Clinical review: The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab. 2009;94(8):2692–2701. [PubMed[]
111. Tomlinson J.W., Walker E.A., Bujalska I.J., Draper N., Lavery G.G., Cooper M.S. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocr Rev. 2004;25(5):831–866. [PubMed[]
112. Bose M., Olivan B., Laferrere B. Stress and obesity: the role of the hypothalamic-pituitary-adrenal axis in metabolic disease. Curr Opin Endocrinol Diabetes Obes. 2009;16(5):340–346. [PMC free article] [PubMed[]
113. Tomlinson J.W., Moore J., Cooper M.S., Bujalska I., Shahmanesh M., Burt C. Regulation of expression of 11beta-hydroxysteroid dehydrogenase type 1 in adipose tissue: tissue-specific induction by cytokines. Endocrinology. 2001;142(5):1982–1989.[PubMed[]
114. Dieudonne M.N., Sammari A., Dos Santos E., Leneveu M.C., Giudicelli Y., Pecquery R. Sex steroids and leptin regulate 11beta-hydroxysteroid dehydrogenase I and P450 aromatase expressions in human preadipocytes: Sex specificities. J Steroid Biochem Mol Biol. 2006;99(4-5):189–196. [PubMed[]
115. Masuzaki H., Paterson J., Shinyama H., Morton N.M., Mullins J.J., Seckl J.R. A transgenic model of visceral obesity and the metabolic syndrome. Science. 2001;294(5549):2166–2170. [PubMed[]
116. Kershaw E.E., Morton N.M., Dhillon H., Ramage L., Seckl J.R., Flier J.S. Adipocyte-specific glucocorticoid inactivation protects against diet-induced obesity. Diabetes. 2005;54(4):1023–1031. [PMC free article] [PubMed[]
117. Alberts P., Engblom L., Edling N., Forsgren M., Klingstrom G., Larsson C. Selective inhibition of 11beta-hydroxysteroid dehydrogenase type 1 decreases blood glucose concentrations in hyperglycaemic mice. Diabetologia. 2002;45(11):1528–1532.[PubMed[]
118. Sundbom M., Kaiser C., Bjorkstrand E., Castro V.M., Larsson C., Selen G. Inhibition of 11betaHSD1 with the S-phenylethylaminothiazolone BVT116429 increases adiponectin concentrations and improves glucose homeostasis in diabetic KKAy mice. BMC Pharmacol. 8. 2008:3. [PMC free article] [PubMed[]
119. Gluck M.E. Stress response and binge eating disorder. Appetite. 2006;46(1):26–30.[PubMed[]
120. Laue L., Gold P.W., Richmond A., Chrousos G.P. The hypothalamic-pituitary-adrenal axis in anorexia nervosa and bulimia nervosa: pathophysiologic implications. Adv. Pediatr. 1991;38:287–316. [PubMed[]
121. Tataranni P.A., Larson D.E., Snitker S., Young J.B., Flatt J.P., Ravussin E. Effects of glucocorticoids on energy metabolism and food intake in humans. Am. J. Physiol. 1996;271(2 Pt 1):E317–E325. [PubMed[]
122. Stimson R.H., Johnstone A.M., Homer N.Z., Wake D.J., Morton N.M., Andrew R. Dietary macronutrient content alters cortisol metabolism independently of body weight changes in obese men. J Clin Endocrinol Metab. 2007;92(11):4480–4484. [PubMed[]
123. Lucassen E.A., Cizza G. The Hypothalamic-Pituitary-Adrenal Axis, Obesity, and Chronic Stress Exposure: Sleep and the HPA Axis in Obesity. Curr Obes Rep. 2012;1(4):208–215. [PMC free article] [PubMed[]
124. Galvao Mde O., Sinigaglia-Coimbra R., Kawakami S.E., Tufik S., Suchecki D. Paradoxical sleep deprivation activates hypothalamic nuclei that regulate food intake and stress response. Psychoneuroendocrinology. 2009;34(8):1176–1183. [PubMed[]
125. Meerlo P., Koehl M., van der Borght K., Turek F.W. Sleep restriction alters the hypothalamic-pituitary-adrenal response to stress. J Neuroendocrinol. 2002;14(5):397–402. [PubMed[]
126. Winsky-Sommerer R., Yamanaka A., Diano S., Borok E., Roberts A.J., Sakurai T. Interaction between the corticotropin-releasing factor system and hypocretins (orexins): a novel circuit mediating stress response. J Neurosci. 2004;24(50):11439–11448.[PubMed[]
127. Sandoval D.A., Davis S.N. Leptin: metabolic control and regulation. J Diabetes Complications. 2003;17(2):108–113. [PubMed[]
128. Seelig E., Keller U., Klarhofer M., Scheffler K., Brand S., Holsboer-Trachsler E. Neuroendocrine regulation and metabolism of glucose and lipids in primary chronic insomnia: a prospective case-control study. PLoS One. 2013;8(4):e61780.[PMC free article] [PubMed[]


Light and UV Stress

  1. Caldwell MM (1979) Plant life and ultraviolet radiation: some perspective in the history of the earth’s UV climate. BioScience 29:520–525CrossRefGoogle Scholar
  2. Caldwell MM (1981) Plant response to ultraviolet radiation. In: Encyclopedia of Plant Physiology NS, vol 12A. Springer, Berlin Heidelberg New York, pp 169–197Google Scholar
  3. Demming-Adams B, Adams WW (1992) Photoprotection and other responses of plants to high light stress. Annu Rev Plant Physiol Plant Mol Biol 43:599–626CrossRefGoogle Scholar
  4. Osmond CB, Chow WS (1988) Ecology of photosynthesis in the sun and shade: summary and prognostications. Aust J Plant Physiol 15:1–9CrossRefGoogle Scholar
  5. Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Annu Rev Plant Physiol 35:15–44CrossRefGoogle Scholar
  6. Wellmann E (1983) UV radiation in photomorphogenesis. In: Encyclopedia of Plant Physiology NS, vol 16 B. Springer, Berlin Heidelberg New York, pp 745–756Google Scholar

e. Biogenic Stress (Plant Diseases)

  1. Bell AA (1981) Biochemical mechanisms of disease resistance. Annu Rev Plant Physiol 32:21–81CrossRefGoogle Scholar
  2. Bowles DJ (1990) Defense-related proteins in higher plants. Annu Rev Biochem 59:873–907PubMedCrossRefGoogle Scholar
  3. Burgeff H (1909) Die Wurzelpilze der Orchideen, ihre Kultur und ihr Leben in der Pflanze. Fischer, JenaGoogle Scholar
  4. Callow JA (1983) Biochemical plant pathology. Wiley, Chichester New York BrisbaneGoogle Scholar
  5. Dixon RA (1986) The phytoalexin response: elicitation, signalling and control of host gene expression. Biol Rev 61:239–291CrossRefGoogle Scholar
  6. Downum KR (1992) Light-activated plant defence. New Phytol 122:401–420CrossRefGoogle Scholar
  7. Ebel J (1986) Phytoalexin synthesis: the biochemical analysis of the induction process. Annu Rev Phytopathol 24:235–264CrossRefGoogle Scholar
  8. Ebel J, Cosio EG (1993) Elicitors of plant defense responses. Int J Cytol 148:1–36Google Scholar
  9. Linthorst HJM (1991) Pathogenesis-related proteins of plants. Crit Rev Plant Sci 10:123–150CrossRefGoogle Scholar
  10. Malamy J, Klessig DF (1992) Salicylic acid and plant disease resistance. Plant J 2:643–654CrossRefGoogle Scholar
  11. Malloch DW, Pirozynski KA, Raven PH (1980) Ecological and evolutionary significance of mycorrhizal symbioses in vascular plants (a review). Proc Natl Acad Sci (USA) 77:2113–2118CrossRefGoogle Scholar
  12. Mendgen K, Deising H (1993) Infection structures of fungal plant pathogens — a cytological and physiological evaluation. New Phytol 124:193–213CrossRefGoogle Scholar
  13. Moser M, Haselwandter K (1983) Ecophysiology of mycorrhizal symbioses. In: Encyclopedia of Plant Physiology NS, vol 12C. Springer, Berlin Heidelberg New York, pp 391–421Google Scholar
  14. Scheel D, Parker JE (1990) Elicitor recognition and signal transduction in plant defense gene activation. Z Naturforsch 45c:569–575Google Scholar
  15. Staples RC, Toenniessen GH (1981) Plant disease control. Resistance and susceptibility. Wiley, New York Chichester BrisbaneGoogle Scholar
  16. Werner D (1987) Pflanzliche und mikrobielle Symbiosen. Thieme, Stuttgart New YorkGoogle Scholar

Wise Library 1985

支持網站最好的方式,像是用Line 幫忙把文章分享出去。站長Gmail: 不自律就不太可能快樂。不自律,就很難肯定自己。疫情期間,建議每日將一小杯無糖熱紅茶或無糖抹茶放進早上日程,同時盡可能減糖!預防改善糖尿病推薦食材:洋蔥、無糖抹茶、咖哩及酪梨。理財時代,從照顧好自己的健康開始。付出不可能是錯,只可能是對象錯了。《推理愛》:「判斷一個人愛不愛她很難,但判斷一個人珍不珍惜她卻很簡單。」想著別人的壞,為難了自己,想著別人的好,溫暖了自己。分享很喜歡的箴言: 「人為善,福雖未至,禍已遠之; 人為惡,禍雖未至,福已遠之。」不屬於自己的只會逗留,不會久留。遠離乳癌,醫師呼籲不要使用塑膠袋裝熱食!國外研究證實阿茲海默症患者「禁糖」,可以逆轉病情!西醫無法治癒的疾病,「頭皮針」與「耳針」針灸治療成功率高。維他命E主修復,可預防留疤。提升抗壓力,可以多補充富含維生素B和鈣的食物。提高體溫,便可提振心情和提高自癒力。血糖不穩代價高,要讓血糖平穩,必然要提升肌肉量!提升免疫力,穴道按摩排除氣結是懶人療法。身體很累沒有力氣運動,可以從鹼性飲食(或少肉多菜)飲食開始。科學已證實正面情緒可降低「身體發炎指數和血糖指數」。放下對完美的執著,分手主題小說《推理愛》:「帶著疤,才可以找到真正愛你的人。」禍福相依,創傷之所以存在,往往不是事件本身,而是人們的負面解讀和負面標籤。拔牙與產子都是巨痛,但創傷比例偏低,是因為人們給予事件正面的存在意義,並且相信所有人都能熬過去的意志。不記他人之惡,因為佛教基督教都一樣,老天爺(上帝)都記在本子裡了。傲慢被視為seven deadly sins之首,勿低估言語之惡,聖經是這麼說的“The tongue has the power of life and death, and those who love it will eat its fruit” (Proverbs 18:21).自我提醒:做該做的事,而不是想做的事。Bible強調「柔」「反省懺悔」與「自律」的重要!若你相信基督教,請務必謹記7 deadly sins. 如果你所愛的人,是正直而良善的人,請不要為她(他)的離去而悲傷,他們只是提早畢業去了天堂,搬去與上帝同住!分離是不可免的,但重逢卻是可能的。 According to the Bible, "Everyone who has been given much, much will be demanded" (Luke 12:48). It’s comforting to know that “God promises to make something good out of the storm” for the righteous (Roman 8: 28).It's a bilingual website which encompasses knowledge and information of a multitude of fields, including but not limited to medical news, breakup recovery guide, post-traumatic growth psychology, interpersonal relationship advice, parenting tips, anti-bullying guide and Bible reading guide.




這個網站採用 Akismet 服務減少垃圾留言。進一步瞭解 Akismet 如何處理網站訪客的留言資料